Cover Image

A Symbiosis of Amphibian Embryos and Larvae with Unicellular Green Algae

Alexey Desnitskiy


Literary data on facultative symbiotic relationships between amphibian embryos and unicellular green algae have been considered. Such symbioses may be important for the dispersal and survival of some tailed and anuran amphibians, the embryonic and larval development of which occurs in water. However, many evolutionary trends of amphibians were connected with the transitions to early ontogeny beyond water. Therefore, the symbioses with algae did not play a significant phylogenetic role for this class of animals.


Ambystomatidae; amphibians; eggs; embryos; Oophila amblystomatis; Ranidae; symbiotic algae

Full Text:



Altig R. and McDiarmid R. W. (2007), «Morphological diversity and evolution of egg and clutch structure in amphibians», Herpetol. Monogr., 21(1), 1 – 32.

AmphibiaWeb (2016), Information on Amphibian Biology and Conservation, Berkeley, California: Electronic database. Accessed: July 5, 2016.

Anderson J. D. (1967), «A comparison of the life histories of coastal and montane populations of Ambystoma macrodactylum in California», Am. Midland Nat., 77(2), 323 – 355.

Bachmann M. D., Carlton R. G., Burkholder J. M., and Wetzel R. G. (1986), «Symbiosis between salamander eggs and green algae: microelectrode measurements inside eggs demonstrate effect of photosynthesis on oxygen concentration», Can. J. Zool., 64(7), 1586 – 1588.

Barsanti L., Coltelli P., Evangelista V., Frassanito A. M., Passarelli V., Vesentini N., and Gualtieri P. (2008), «Oddities and curiosities in the algal world», in: V. Evangelista et al. (ed.), Algal Toxins: Nature, Occurrence, Effect and Detection, Springer, Dordrecht (The Netherlands), pp. 353 – 391.

Barth L. G. (1946), «Studies on the metabolism of development», J. Exp. Zool., 103(3), 463 – 486.

Baumgartner C., Bitschi N., Ellinger N., Gollmann B., Gollmann G., Köck M., Lebeth E., and Waringer-Löschenkohl A. (1996), «Laichablage und Embryonalentwicklung von Springfrosch (Rana dalmatina Bonaparte, 1840) und Grasfrosch (Rana temporaria Linnaeus, 1758) in einem syntopen Vorkommen», Herpetozoa, 9(3/4), 133 – 150.

Baxter L., Brain R., Hosmer A. J., Nema M., Müller K. M., Solomon K. R., and Hanson M. L. (2015), «Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis)», Environm. Pollut., 206, 324 – 331.

Bianchini K., Tattersall G. J., Sashaw J., Porteus C. S., and Wright P. A. (2012), «Acid water interferes with salamander-green algae symbiosis during early embryonic development», Physiol. Biochem. Zool., 85(5), 470 – 480.

Bishop C. D. and Miller A. G. (2014), «Dynamics of the growth, life history transformation and photosynthetic capacity of Oophila amblystomatis (Chlorophyceae), a green algal symbiont associated with embryos of the northeastern yellow spotted salamander Ambystoma maculatum (Amphibia)», Symbiosis, 63(2), 47 – 57.

Boldina O. N. (2015), «The bloom of Chlamydomonas debaryana in egg masses of Rana sp»., in: Proc. of the Tenth Annual Ecological School and Conference in Sergievka, 26 – 27 November, 2015, Stary Peterhof, St. Petersburg, pp. 13 – 16 [in Russian].

Bonk M., Bury S., Hofman S., Szymura J. M., and Pabijan M. (2012), «A reassessment of the northeastern distribution of Rana dalmatina (Bonaparte, 1840)», Herpetol. Notes, 5, 345 – 354.

Cliburn J. W. and Ward B. Q. (1963), «Occurrence of Oophila amblystomatis (a symbiotic alga) in Ambystoma maculatum of the lower Gulf Coastal Plain», Am. Midland Nat., 69(2), 508 – 509.

Dillard G. E., Weik K. L., and Mohlenbrock R. H. (1963), «Notes on the algal flora of Illinois», Am. Midland Nat., 69(1), 127 – 135.

Drake D. L., Drayer A., and Trauth S. E. (2007), «Bufo americanus (American toad). Algal symbiosis», Herpetol. Rev., 38(4), 435 – 436.

Duellman W. E. and Trueb L. (1994), The Biology of Amphibians, Johns Hopkins Univ. Press, Baltimore and London.

Elinson R. P. and del Pino E. M. (2012), «Developmental diversity of amphibians», WIREs Dev. Biol., 1(3), 345 – 369. doi: 10.1002/wdev.23

Ettl H. (1961), «Zwei neue Chlamydomonaden», Arch. Protistenk., 105(2), 273 – 280.

Eycleshymer A. C. (1895), «The early development of Amblystoma, with observations on some other vertebrates», J. Morphol., 10(2), 343 – 418.

Gatz A. J. (1973), «Algal entry into the eggs of Ambystoma maculatum», J. Herpetol., 7(2), 137 – 138.

Gilbert P. W. (1942), «Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes», Ecology, 23(2), 215 – 227.

Gilbert P. W. (1944), «The alga-egg relationship in Ambystoma maculatum, a case of symbiosis», Ecology, 25(3), 366 – 369.

Gilbert S. F. (2013), Developmental Biology. Tenth Edition, Sinauer Assoc., Sunderland (MA, USA).

Goff L. J. and Stein J. R. (1978), «Ammonia: basis for algal symbiosis in salamander egg masses», Life Sci., 22(16), 1463 – 1468.

Graham E. R., Fay S. A., Davey A., and Sanders R. W. (2013), «Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum», J. Exp. Biol., 216(3), 452 – 459.

Graham E. R., McKie-Krisberg Z. M., and Sanders R. W. (2014), «Photosynthetic carbon from algal symbionts peaks during the latter stages of embryonic development in the salamander Ambystoma maculatum», BMC Res. Notes, 7, 764. doi: 10.1186/1756-0500-7-764

Hammen C. S. and Hutchison V. H. (1962), «Carbon dioxide assimilation in the symbiosis of the salamander Ambystoma maculatum and the alga Oophila amblystomatis», Life Sci., 1(10), 527 – 532.

Hedges S. B., Duellman W. E., and Heinicke M. P. (2008), «New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation», Zootaxa, 1737, 1 – 182.

Henley C. and Costello D. P. (1951), «Heteroploidy in a ‘natural population’ of Amblystoma punctatum», J. Morphol., 89(1), 91 – 109.

Hollerbach M. M. and Sedova T. V. (1974), «Symbiosis in the algae», Botan. Zh., 59(9), 1359 – 1374 [in Russian].

Holtfreter J. (1943), «A study of the mechanics of gastrulation. Part I», J. Exp. Zool., 94(3), 261 – 318.

Hutchison V. H. and Hammen C. S. (1958), «Oxygen utilization in the symbiosis of embryos of the salamander, Ambystoma maculatum and the alga, Oophila amblystomatis», Biol. Bull., 115(3), 483 – 489.

Kerney R. (2011), «Symbioses between salamander embryos and green algae», Symbiosis, 54(3), 107 – 117.

Kerney R., Kim E., Hangarter R. P., Heiss A. A., Bishop C. D., and Hall B. K. (2011), «Intracellular invasion of green algae in a salamander host», Proc. Natl. Acad. Sci. USA, 108(16), 6497 – 6502.

Kim E., Lin Y., Kerney R., Blumenberg L., and Bishop C. (2014), «Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses», PLoS One, 9(11): e108915. doi: 10.1371/journal.pone.0108915

Lee R. E. (2008), Phycology. Fourth Edition, Cambridge Univ. Press, Cambridge (UK).

Lin Y. and Bishop C. D. (2015), «Identification of free-living Oophila amblystomatis (Chlorophyceae) from yellow spotted salamander and wood frog breeding habitat», Phycologia, 54(2), 183 – 191.

Lutz B. (1947), «Trends towards non-aquatic and direct development in frogs», Copeia, 1947(4), 242 – 252.

Marco A. and Blaustein A. R. (2000), «Symbiosis with green algae affects survival and growth of northwestern salamander embryos», J. Herpetol., 34(4), 617 – 621.

Orr H. (1888), «Note on the development of amphibians, chiefly concerning the central nervous system; with additional observations on the hypophysis, mouth, and the appendages and skeleton of the head», Quart. J. Microsc. Sci. New Ser., 29, 295 – 324.

Peyton K. A., Hanisak M. D., and Lin J. (2004), «Marine algal symbionts benefit benthic invertebrate embryos deposited in gelatinous egg masses», J. Exp. Mar. Biol. Ecol., 307(2), 139 – 164.

Pinder A. W. and Friet S. C. (1994), «Oxygen transport in egg masses of the amphibians Rana sylvatica and Ambystoma maculatum: convection, diffusion and oxygen production by algae», J. Exp. Biol., 197(1), 17 – 30.

Rodrigues-Gil J. L., Brain R., Baxter L., Ruffell S., McConkey B., Solomon K., and Hanson M. (2014), «Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont», Environm. Toxicol. Chem., 33(11), 2566 – 2575.

Rugh R. (1962), Experimental Embryology. Techniques and Procedures. Third Edition, Burgess Publ. Co., Minneapolis (Minnesota).

Ruth B. C., Dunson W. A., Rowe C. L., and Hedges S. B. (1993), «A molecular and functional evaluation of the egg mass color polymorphism of the spotted salamander, Ambystoma maculatum», J. Herpetol., 27(3), 306 – 314.

Shubert L. E. (2003), «Nonmotile coccoid and colonial green algae. Ecology and classification», in: J. D. Wehr and R. G. Sheath (eds.), Freshwater Algae of North America, Elsevier, Amsterdam, pp. 253 – 309.

Small D. P., Bennett R. S., and Bishop C. D. (2014), «The roles of oxygen and ammonia in the symbiotic relationship between the spotted salamander Ambystoma maculatum and the green alga Oophila amblystomatis during embryonic development», Symbiosis, 64(1), 1 – 10.

Starr R. C. and Zeikus J. A. (1993), «UTEX — the culture collection of algae at the University of Texas at Austin. 1993 list of cultures», J. Phycol., 29(Suppl. 2), 1 – 106.

Strathmann R. R. (2000), «Form, function, and embryonic migration in large gelatinous egg masses of arenicolid worms», Invertebr. Biol., 119(3), 319 – 328.

Tattersall G. J. and Spiegelaar N. (2008), «Embryonic motility and hatching success of Ambystoma maculatum are influenced by a symbiotic alga», Can. J. Zool., 86(11), 1289 – 1298.

Townes P. L. and Holtfreter J. (1955), «Directed movements and selective adhesion of embryonic amphibian cells», J. Exp. Zool., 128(1), 53 – 120.

Tumlison R. and Trauth S. (2006), «A novel facultative mutualistic relationship between bufonid tadpoles and flagellated green algae», Herpetol. Cons. Biol., 1(1), 51 – 55.

Valls J. H. and Mills N. E. (2007), «Intermittent hypoxia in eggs of Ambystoma maculatum: embryonic development and egg capsule conductance», J. Exp. Biol., 210(14), 2430 – 2435.

Wake D. B. and Hanken J. (1996), «Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis?» Int. J. Dev. Biol., 40(4), 859 – 869.

Wasser S. P., Kondratieva N. V., Massyuk N. P., Palamar-Mordvintseva G. M., Vetrova Z. I., Kordyum E. L., Moshkova N. A., Prikhodkova L. P., Kovalenko O. V., Stupina V. V., Tsarenko P. M., Unger V. P., Radchenko M. I., Vinogradova O. N., Buhtiarova L. N., and Razumna L. F. (1989), The Algae. Handbook, Naukova Dumka, Kiev [in Russian].

Wells K. D. (2007), The Ecology and Behavior of Amphibians, Univ. of Chicago Press, Chicago and London.

Wille N. (1911), «Conjugatae und Chlorophyceae», in: A. Engler and K. Prantl (eds.), Die Natürlichen Pflanzenfamilien. Nachträge zum I Teil. Abt. 2, Verlag Wilhelm Engelmann, Leipzig, pp. 1 – 96.

Zaika V. E. (1991), The Symbiosis of Aquatic Animals with the Algae, Naukova Dumka, Kiev [in Russian].



  • There are currently no refbacks.

You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email