Morphometric Differentiation and Diet of Engystomops pustulosus (Amphibia: Leptodactylidae) in Three Populations from Colombia

Pedro Atencia, Liliana Solano, Jonathan Liria


This paper evaluated the intraspecific variation and diet of Engystomops pustulosus in three localities (Colosó, Santa Inés, and El Roble) of the department of Sucre, Colombia. Thirty specimens were collected by locality and the diet composition was determined. We characterized the phenotypic variation by means of skull geometric morphometrics and ten body measures. Finally, the relationship between morphogeometric variables (shape and size) and diet were evaluated. We found significant differences between skull conformation and localities, and between localities and the centroid size. Termites were the most important type of prey, followed by ants and mites. The diet composition did not correlate with the body measures; however, an analysis of Partial Least-Squares showed a correlation between the composition of the diet and skull conformation.


intraspecific variation; shape; procrustes; covariation

Full Text:



Abadía J. C., Arcila Á. M., and Chacón P. (2013), «Incidencia y distribución de termitas (Isoptera) en cultivos de cítricos de la costa Caribe de Colombia», Rev. Colomb. Entomol., 39(1), 1 – 8.

Acevedo A., Lampo M., and Cipriani R. (2016), «The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species», Zootaxa, 4103(6), 574 – 586.

Acosta-Galvis A. R. (2012), «Anfibios de los enclaves secos del área de influencia de los Montes de María y la ciénaga de La Caimanera en el Departamento de Sucre», Rev. Biota Colomb., 13(2), 211 – 231.

Adams D. C. and Rohlf F. J. (2000), «Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study», Proc. Natl. Acad. Sci. USA, 97, 4106 – 4111.

Amor N., Farjallah S., and Said K. (2009), «Morphometric variation in the Tunisian Green Frog, Rana saharica (Anura: Ranidae)», Afr. Zool., 44(2), 194 – 203.

Atkinson D. (1994), «Temperature and organism size a biological law for ecotherms?» Adv. Ecol. Res., 156, 390 – 415.

Biavati G., Wiederhecker H., and Colli G. (2004), «Diet of Epipedobates flavopictus (Anura: Dendrobatidae) in a Neotropical Savanna», J. Herpetol., 38, 510 – 518.

Birch J. (1999), «Skull allometry in the Marine Toad, Bufo marinus», J. Morphol., 241, 115 – 126.

Blanco-Torres A. (2009), Repartición de microhabitas y recursos tróficos entre especies de bufonidae y leuperidae (Amfibia: Anura) en áreas con bosque seco tropical de la región caribe, Colombia. Tesis presentada para optar el título de Maestría en Biología, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá.

Bookstein F. L. (1991), Morphometric Tools for Landmark Data. Geometry and Biology, Cambridge Univ. Press, Cambridge.

Cannatella D. C. and Duellman W. E. (1984), «Leptodactylid frogs of the Physalaemus pustulosus Group», Copeia, 1984(4), 902 – 921.

Castellano S., Giacoma C., and Dujsebayeva T. (2000), «Morphometrical and advertisement call geographic variation in polyploid green toads», Biol. J. Linn. Soc., 70, 341 – 360.

Clemente-Carvalho R. B. G., Monteiro L. R., Bonato V., Rocha H. S., Pereira G. R., Dayton G., Saenz D., Baum K., Langerhans R., and DeWitt T. (2005), «Body shape, burst speed and escape behavior of larval anurans», Oikos, 111, 582 – 591.

da Rosa I., Canavero A., Maneyro R., Naya D. E., and Camargo A. (2002), «Diet of four sympatric anuran species in a temperate environment», Bol. Soc. Zool. Uruguay, 13, 12 – 20.

Dunham A. (1983), «Realized niche overlap, resource abundance and intensity of interspecific competition», in: R. D. Huey, E. R. Pianka, and T. W. Schoener (eds.), Lizard Ecology, Harvard Univ. Press, Cambridge, pp. 261 – 280.

Duellman W. E. and Trueb L. (1994), Biology of Amphibians, Johns Hopkins Univ. Press, Baltimore, Maryland.

González-Durán G., Gutiérrez-Cárdenas P. D. A, and Lasso S. E. (2012), «Physalaemus pustulosus (túngara frog) diet», Herpetol. Rev., 43, 124 – 125.

Hammer Ø., Harper D. A. T., and Ryan P. D. (2001), «PAST version 2.17: paleontological statistics software package for education and data analysis», Palaeontol. Electr., 4(1).

Hill M. (1973), «Diversity and evenness: a unifying notation and its consequences», Ecology, 54, 427 – 432.

Iturra-Cid M., Ortiz J. C., and Ibargüengoytía N. R. (2010), «Age, size, and growth of the Chilean frog Pleurodema thaul (Anura: Leiuperidae): latitudinal and altitudinal effects», Copeia, 2010(4), 609 – 617.

Ivanovic A., Sotiropoulos K., Nazan U., Dzukic G., Olgun K., Coga D., and Kalezic M. (2011), «A phylogenetic view on skull size and shape variation in the smooth newt (Lissotriton vulgaris, Caudata: Salamandridae)», Zool. Syst. Evol., 1(4), 1439 – 0469.

Kaliontzopoulou A. (2011), «Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles», Basic Appl. Herpetol., 25, 5 – 32.

Klingenberg C. P. (2011), «MorphoJ: an integrated software package for geometric morphometrics», Mol. Ecol. Resour., 11, 353 – 357.

Morrison C. and Hero J. M. (2003), «Geographic variation in life-history characteristics of amphibians: a review», J. Animal Ecol., 72(2), 270 – 279.

Oliveira D. F., Lopes R. T., Haddad C. F. B., Martins E. G., and Dos Reis S. F. (2008), «Geographic variation in cranial shape in the pumpkin toadlet (Brachycephalus ephippium): a geometric analysis», J. Herpetol., 42, 176 – 185.

Perry G. and Pianka E. (1997), «Animal foraging: past, present and future», Trends Ecol. Evol., 12, 360 – 364.

Ponssa M. L. and Vera C. F. (2012), «Patterns of skull development in anurans: size and shape relationship during postmetamorphic cranial ontogeny in five species of the Leptodactylus fuscus group (Anura: Leptodactylidae)», Zoomorphology, 131, 349 – 362.

Rohlf F. J. (2015), tpsUtil, File Utility Program. Ver. 1.68, Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F. J. (2010), tpsDig, Digitize Landmarks and Outlines. Ver. 2.28, Department of Ecology and Evolution, State University of New York at Stony Brook.

Rohlf F. J. and Corti M. (2000), «Use of two-block partial least-squares to study covariation in shape», Syst. Biol., 49(4), 740 – 753.

Rog S., Ryan M. J., Mueller U., and Lampert K. P. (2013), «Evidence for morphological and genetic diversification of túngara frog populations on islands», Herpetol. Conserv. Biol., 8(1), 228 – 239.

Sheets H. (2004), Morphometrics Software: IMP-Integrated Morphometrics Package, morphsoft.html.

Silva D. M., Cruz A. D., Bastos R. P., Telles M. P. C., and Diniz-Filho J. A. F. (2008), «Morphometric and genetic differentiation among populations of Eupemphix nattereri (Amphibia, Anura, Leiuperidae) from central Brazil», Iheringia Sér. Zool., 98(4), 493 – 500.

Smith D. C. and Van Buskirk J. (1995), «Phenotypic design, plasticity, and ecological performance in two tadpole species», Am. Nat., 154, 211 – 233.

Toft C. A. (1980), «Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment», Oecologia, 45, 131 – 141.

Triplehorn C. A. and Johnson N. F. (2005), Borror and Delong’ Introduction to the Study of Insects, Thomson Brook/Cole, México, D.F.

Vieira K. S., Arzabe C., Hernández M., and Vieira W. S. (2008), «An examination of morphometric variations in a neotropical toad population (Proceratophrys cristiceps, Amphibia, Anura, Cycloramphidae)», PLoS ONE, 3, 39.

Vitt L. J. and Caldwell J. P. (2014), Herpetology: an Introductory Biology of Amphibians and Reptiles, Acad. Press – Elsevier, London.

Watters J. L., Cummings S. T., Flanagan R. L., and Siler C. D. (2016), «Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach», Zootaxa, 4072(4), 477 – 495.



  • There are currently no refbacks.

You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email