Open Access Open Access  Restricted Access Subscription or Fee Access

The Allelic Variants in Microsatellite Loci and Phylogenetic Relationships of Darevskia rudis (Bedriaga, 1886) and D. bithynica (Méhely, 1909) Based on Mitochondrial DNA in Turkey

Halime Koç, Bilal Kutrup, Ufuk Bülbül, Muammer Kurnaz


The spiny-tailed lizard, which has a series of taxonomic revisions, is one of the most common lizard species in Turkey. In this study, sequence data derived from three microsatellite loci (Du215, Du281, and Du323), two mitochondrial (16S rRNA and Cyt-b) genes and combined data were used to evaluate the taxonomic status of Darevskia rudis and Darevskia bithynica with new samples from all subspecies populations in Turkey. Our results indicated that the genetic variations of microsatellite loci were not specific to populations within species, and only minor differences separated D. rudis and D. bithynica populations. Furthermore, the markers we used for phylogenetic analyses (NJ, ML, MP, and BI) produced topologically similar trees based on 16S rRNA and Cyt-b while the combined data produced conflicting trees with the separate gene analyses. Finally, the basal relationships among the populations in Turkish populations D. rudis and D. bithynica were not resolved with this dataset, and we found a hard polytomy at the basis of the phylogeny.


hard polytomy; Cyt-b; Anatolia; microsatellite; genetic diversity; 16S rRNA

Full Text:



Akaike H. (1974), «A new look at the statistical model identification», IEEE T. Automat. Contr., 19(6), 716 – 723.

Arribas O., Ilgaz Ç., Kumlutaş Y., Durmuş S. H., Avcı A., and Üzüm N. (2013), «External morphology and osteology of Darevskia rudis (Bedriaga, 1886), with a taxonomic revision of the Pontic and Small-Caucasus populations (Squamata: Lacertidae)», Zootaxa, 3626(4), 401 – 428.

Başoğlu M. and Baran İ. (1977), Türkiye Sürüngenleri: Kaplumbağa ve Kertenkeleler [The Reptiles of Turkey: Turtles and Lizards], İlker Press, İzmir [in Turkish].

Bedriaga J. V. (1886), «Beiträge zur Kenntnis der Lacertiden-Familie (Lacerta, Algiroides, Tropidosaura, Zerzumia und Bettaia), Abhandlungen dersenckenbergischen naturforschenden», Ges. Nat., 14, 17 – 443.

Bodenheimer F. S. (1944), «Introduction into the knowledge of the amphibia and reptilia of Turkey», İstanbul Univ. Fen Fak. Mecm. Ser. B, 9, 1 – 78.

Böhme W. and Budak A. (1977), «Über die rudis-Gruppe des Lacerta saxicola Komplexes in der Türkei, I (Reptilia: Sauria: Lacertidae)», Salamandra, 13, 141 – 149.

Böhme W. and Bischoff W. (1984), «Lacerta rudis Bedriaga 1886 — Kielschwanz-Felseidechse», in: W. Böhme (ed.), Handbuch der Reptilien und Amphibien Europas, Band 2/I Echsen II (Lacerta), pp. 332 – 344.

Budak A. and Böhme W. (1978), «Über die rudis-gruppe des Lacerta saxicola komplexes in der Türkei, I (Reptilia: Sauria: Lacertidae)», Ann. Nat. Hist. Mus. Wien, 81, 273 – 281.

Ciobanu D., Roudykh I. A., Ryabinina N. L., Grechko V. V., Kramerov D. A., and Darevsky I. S. (2002), «Reticulate evolution of parthenospecies of the lacertid rock lizards: inheritance of CLsat tandem repeats and anonymous RAPD markers», Mol. Biol., 36(2), 223 – 231.

Clement M., Posada D., and Crandall K. A. (2000), «TCS, a computer program to estimate gene genealogies», Mol. Ecol., 9(10), 1657 – 1659.

Darevsky I. S. (1967), Rock lizards of the Caucasus (Systematic, ecology, and phylogeneis of the polymorphic groups of rock lizards of the subgenus Archaeolacerta), Nauka, Leningrad [in Russian].

Doronin I. V. (2017), «Review of type specimens of the Rock lizards of Darevskia (rudis) complex (Sauria: Lacertidae)», Tr. Zool. Inst. RAN, 321(3), 339 – 361 [in Russian].

Elder J. F., Jr., and Turner B. J. (1995), «Concerted evolution of repetitive DNA sequences in eukaryotes», Biol. Rev., 70(3), 275 – 320.

Faircloth B. C. (2008), «Msatcommander: Detection of microsatellite repeat arrays and automated, locus specific primer design», Mol. Ecol. Resour., 8(1), 92 – 94.

Farris F. S., Kallersjö M., Kluge A. G., and Bult C. (1995), «Constructing a significance test for incongruence», Syst. Biol., 44(4), 570 – 572.

Felsenstein J. (1985), «Confidence limits on phylogenies: an approach using the bootstrap», Evolution, 39(4), 783 – 791.

Fu J. (1999), GenBank, nuccore/AF206195.1 (accessed on January 3, 2017).

Fu J., Murphy R. V., and Darevsky I. S. (2000), «Divergence of the cytochrome b gene in the Lacerta raddei complex and its parthenogenetic daughter species: Evidence for recent multiple origins», Copeia, 2000(2), 432 – 440.

Gabelaia M., Tarkhnishvili D., and Adriaens D. (2018), «Use of threedi-mensional geometric morphometrics for the identification of closely related species of Caucasian rock lizards (Lacertidae: Darevskia)», Biol. J. Linn. Soc., 20, 1 – 9.

Girnyk A. E., Vergun A. A., Omelchenko A. V., Petrosyan V. G., Korchagin V. I., and Ryskov A. P. (2017), «Molecular and genetic characterization of the allelic variants of Du215, Du281, Du323, and Du47G microsatellite loci in parthenogenetic lizard Darevskia armeniaca (Lacertidae)», Anim. Genet., 53(4), 472 – 482.

Grechko V. V., Ciobanu D. G., Darevsky I. S., Kosushkin S. A., and Kramerov D. A. (2006), «Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae)», Genome, 49(10), 1297 – 1307.

Grechko V. V., Bannikova A. A., Kosushkin S. A., Ryabinina N. L., Milto K. D., Darevsky I. S., and Kramerov D. A. (2007), «Molecular genetic diversification of the lizard complex Darevskia raddei (Sauria: Lacertidae): Early stages of speciation», Mol. Biol., 41(5), 764 – 775.

Gül S., Özdemir N., Kumlutaş Y., and Ilgaz Ç. (2014), «Age structure and body size in three populations of Darevskia rudis (Bedriaga, 1886) from different altitudes», Herpetozoa, 26(3/4), 151 – 158.

Koç H., Kutrup B., Eroğlu O., Bülbül U., Kurnaz M., Afan F., and Eroğlu A. İ. (2017), «Phylogenetic relationships of D. rudis (Bedriaga, 1886) and D. bithynica (Mehely, 1909) based on microsatellite and mitochondrial DNA in Turkey», Mitochondr. DNA, 28(6), 814 – 821.

Korchagin V. I., Badaeva T. N., Tokarskaya O. N., Martirosyan I. A., Darevsky I. S., and Ryskov A. P. (2007), «Molecular characterization of allelic variants of (GATA)n microsatellite loci in parthenogenetic lizards Darevskia unisexualis (Lacertidae)», Gene, 392(1/2), 126 – 133.

Kornilios P., Ilgaz Ç., Kumlutaş Y., Giokas S., Fraguedakis-Tsolis S., and Chondropoulos B. (2011), «The role of Anatolian refugia in herpetofaunal diversity: an mtDNA analysis of Typhlops vermicularis Merrem, 1820 (Squamata, Typhlopidae)», Amphibia–Reptilia, 32(3), 351 – 363.

Lantz L. A. and Cyrén O. (1936), «Contribution а la connaissance de Lacerta saxicola Eversmann», Bull. Soc. Zool. Fr., 61, 159 – 181.

Malysheva D. N., Tokarskaya O. N., Petrosyan V. G., Danielyan F. D., Darevsky I. S., and Ryskov A. P. (2007), «Genomic variation in parthenogenetic lizard Darevskia armeniaca: Evidence from DNA fingerprinting data», J. Hered., 98(2), 173 – 178.

Mayer W. and Lutz D. (1989), «Chemosystematische untersuchungen zur phylogenese der Sammelgattung Lacerta (Reptilia: Sauria: Lacertidae)», Zeitschr. Zool. Syst. Evol. Forsch., 27, 338 – 349.

Méhely L. V. (1909), «Materialien zu einer systematik und phylogenie der muralis-ähnlichen Lacerten», Annals. Hist. Nat. Mus. Nat. Hung., 3, 409 – 621.

Milto K. D. (2010), «Status of the rare rock lizard, Darevskia tristis from pontic mountains», in: 7th Symp. on the lacertids of the Mediterranean Basin, Mallorca, Spain, pp. 52.

Murphy R., Fu J., MacCulloch R. D., Darevsky I. S., and Kupriyanova L. A. (2000), «A fine line between sex and unisexuality: The phylogenetic constraints on parthenogenesis in Lacertid lizards», Zool. J. Linn. Soc., 130, 527 – 549.

Olave M., Avila L. J., Sites J. W., Jr., and Morando M. (2015), «Model-based approach to test hard polytomies in the Eulaemus clade of the most diverse South American lizard genus Liolaemus (Liolaemini, Squamata)», Zool. J. Linn. Soc., 174, 169 – 184.

Orlova V. F. (1978), «Geographical distribution and intraspecific variability of meadow lizard in the Caucasus», in: Birds and Reptiles, Izd. MGU, Moscow, pp. 204 – 215 [in Russian].

Osipov F. A., Vergun A. A., Girnyk A. E., Kutuzova N. M., and Ryskov A. P. (2016), «Molecular genetic characteristics of allele variants of microsatellite loci Du281, Du215, and Du323 in the parthenogenetic lizards Darevskia rostombekovi (family Lacertidae)», Mol. Genet. Microbiol. Virol., 34(2), 58 – 62.

Palumbi S. R., Martin A., Romano S., McMillan W. O., Stice L., and Grabowski G. (1991), The Simple Fool’s Guide to PCR Version 2.0, privately published document compiled by S. Palumbi, University of Hawaii, Honolulu.

Palumbi S. R. (1996), «Nucleic acids II: the polymerase chain reaction», in: Hillis D. M., Moritz C., and Mable B. K. (eds.), Molecular Systematics, Sinauer, Sunderland, pp. 205 – 248.

Parker E. D. and Selander R. K. (1976), «The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus», Genetics, 84(4), 791 – 805.

Pavlicev M. and Mayer W. (2006), «Multiple copies of coding as well as pseudogene c-mos sequence exist in three lacertid species», J. Exp. Zool. B. Mol. Dev. Evol., 306(B), 539 – 550.

Pavlicev M., Pinsker W., and Mayer W. (2011), GenBank, (accessed on January 5, 2017).

Posada D. and Crandall K. A. (1998), «MODELTEST: testing the model of DNA substitution», Bioinformatics, 14(9), 817 – 818.

Ronquist A. and Huelsenbeck J. P. (2003), «MrBayes 3: Bayesian phylogenetic inference under mixed models», Bioinformatics, 19(12), 1572 – 1574.

Ryabinina N. L., Bannikova A. A., Kosushkin S. A., Ciobanu D. G., Milto K. D., Tuniyev B. S., Orlova V. F., Grechko V. V., and Darevsky I. S. (2003), «Estimation of the subspecific level of differentiation in Caucasian Lizards of the Genus Darevskia (syn. «Lacerta saxicola complex», Lacertidae, Sauria) using genome DNA markers», Russ. J. Herpetol., 9(3), 185 – 194.

Swofford D. L. (2000), PAUP* Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinaeur Associates, Sunderland, Massachusetts.

Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013), «MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0», Mol. Biol. Evol., 30(12), 2725 – 2729.

Tarkhnishvili D. N., Murtskhvaladze M., and Gavashelishvili A. (2013), «Speciation in Caucasian lizards: climatic dissimilarity of the habitats is more important than isolation time», Biol. J. Linn. Soc., 109, 876 – 892.

Tchernov E. (1992), «The Afro-Arabian component in the Levantine mammalian fauna — a short biogeographical review», Isr. J. Zool., 38(3/4), 155 – 192.

Terentjev P. V. and Chernov S. A. (1965), Key to the Amphibians and Reptiles. 3rd edition, Israel Programme of Translations, Jerusalem.

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., and Higgins D. G. (1997), «The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools», Nucl. Acids Res., 25(24), 4876 – 4882.

Vergun A. A., Martirosyan I. A., Semyenova S., Omelchenko A. V., Petrosyan V. G., Lazebny O., Tokarskaya O. N., Korchagin V. I., and Ryskov A. P. (2014), «Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli», PLoS ONE, DOI: 10.1371/ journal.pone.0091674.

Vieira M. L. C., Santini L., Diniz A. L., and Munhoz C. F. (2016), «Microsatellite markers: what they mean and why they are so useful», Genet. Mol. Biol., 39(3), 312 – 328.

Werner F. (1902), «Die reptilien und amphibian fauna von Kleinasien», S. B. Akad. Wiss. Wien. Math. Nat. K. L., 111, 1057 – 1121.



  • There are currently no refbacks.