Open Access Open Access  Restricted Access Subscription or Fee Access

Predicting the Distribution of Three Korean Pit Viper Species (Gloydius brevicaudus, G. ussuriensis, and G. intermedius) under Climate Change

Min Seock Do, Seoyun Choi, Hoan-Jin Jang, Jae-Hwa Suh

Abstract


Climate change can pose severe threats to wildlife populations causing population declines and destroying their habitats. Particularly, pit vipers belonging to reptiles, poikilotherm, are vulnerable to climate change due to their narrow movement range and low dispersal capability. This study aimed to identify pit viper species vulnerable to climate change using their predicted geographical habitat range based on the current and future Korean pit viper species distribution model. The results of this study showed that three major environmental factors related to altitude and temperature (BIO4 and BIO5) influenced the habitat distribution of three pit viper species. These factors showed significant variation between increased, maintained, and decreased habitat areas of the species due to climate change. It was also predicted that the habitat of Korean pit vipers would decrease by more than 80% under the RCP 8.5 scenario. Especially, Central Asian pit viper was predicted to lose 98.52% of its habitat, indicating that it would be the most vulnerable species to climate change. Although we confirmed that forest areas around the Taebaek Mountains, known as current major distribution areas of pit vipers, would provide maintained or even increased habitat areas to these species along climate change, habitable space for the vipers was still predicted to be very narrow. Therefore, it is critical to protect the forest areas around the Taebaek Mountains to minimize the impact of climate change on Korean pit vipers. Moreover, since some populations of Central Asian pit viper, most vulnerable to climate change, are geographically isolated, it will be necessary to establish systematic conservation measures by determining the protection priority of populations through studying genetic diversity between populations. We believe that the results of this study will provide an important basis for establishing management measures in designating the habitat of a threatened population due to climate change as a protected area.

Keywords


climate change; ecology; distribution; Viperidae; Korea

Full Text:

PDF

References


Booth D. T. (2006), «Influence of incubation temperature on hatchling phenotype in reptiles», Physiol. Biochem. Zool., 79(2), 274 – 281.

Bombi P., Akani G. C., Ebere N., and Luiselli L. (2011), «Potential effects of climate change on high-and low-abundance populations of the Gaboon viper (Bitis gabonica) and the nose-horned viper (B. nasicornis) in southern Nigeria», Herpetol. J., 21(1), 59 – 64.

Brito J. C., Santos X., Pleguezuelos J. M., and Sillero N. (2008), «Inferring evolutionary scenarios with geostatistics and geographical information systems for the viperid snakes Vipera latastei and Vipera monticola», Biol. J. Linn. Soc., 95(4), 790 – 806.

Brito J. C., Fahd S., Martínez-Freiría F., Tarroso P., Larbes S., Pleguezuelos J. M., and Santos X. (2011a), «Climate change and peripheral populations: predictions for a relict Mediterranean viper», Acta Herpetol., 6(1), 105 – 118.

Brito J. C., Fahd S., Geniez P., Martínez-Freiría F., Pleguezuelos J. M., and Trape J. F. (2011b), «Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS», J. Arid. Environ., 75(11), 1029 – 1037.

Caten C. T., Lima-Ribeiro M. D. S., da Silva N. J., Moreno A. K., and Terribile L. C. (2017), «Evaluating the effectiveness of Brazilian protected areas under climate change: a case study of Micrurus brasiliensis (Serpentes: Elapidae)», Trop. Conserv. Sci., 10, 1940082917722027.

Collins M., Knutti R., Arblaster J., Dufresne J. L., Fichefet T., Friedlingstein P., and Booth B. B. (2013), Long-Term Climate Change: Projections, Commitments, and Irreversibility, Cambridge Univ. Press, New York, pp. 1029 – 1136.

Corti C., Capula M., Luiselli L., Sindaco R., and Razzetti E. (2011), Fauna d’Italia. Reptilia. Vol. XLV, Calderini, Milano.

David P. and Vogel G. (2015), Asian Pitvipers, Edition Chimaira, Frankfurt am Main, pp. 545 – 557.

Do M. S. and Yoo J. C. (2014), «Distribution pattern according to altitude and habitat type of the Red-tongue viper snake (Gloydius ussuriensis) in the Cheon-ma mountain», J. Wetlands Res., 16(2), 193 – 204.

Do M. S., Lee J. W., Jang H. J., Kim D. I., and Yoo J. C. (2016), «Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS», Korean J. Environ. Ecol., 30(2), 173 – 184 [in Korean with English abstract].

Do M. S., Nam K. B., and Yoo J. C. (2017a), «Distribution and movement tendencies of short-tailed viper snakes (Gloydius saxatilis) by Altitude», Asian Herpetol. Res., 8(1), 39 – 47.

Do M. S., Nam K. B., and Yoo J. C. (2017b), «A first observation of courtship behavior of Short-Tailed Viper Snake, Gloy-dius saxatilis (Squamata: Viperidae) in Korea», J. Asia-Pac. Biodivers., 10(4), 583 – 586.

Do M. S., Lee J. W., Jang H. J., Kim D. I., Park J., and Yoo J. C. (2017c), «Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea», Korean J. Environ. Ecol., 31(4), 381 – 396.

Do M. S. and Nam K. B. (2021), «Distribution patterns and ecological niches of the Red-tongued Pit Viper (Gloydius ussuriensis) and the Central Asian Pit Viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea» Russ. J. Herpetol., 28(6), 348 – 354.

Do M. S. (2021), «Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius)», Korean J. Herpetol., 12, 1 – 8.

Gentilli A., Sacchi R., Mangiacotti M., and Scali S. (2011), «A tribute to Hubert Saint Girons: niche separation between Vipera aspis and V. berus on the basis of distribution models», Amphibia–Reptilia, 32(2), 223 – 233.

Gibbons J. W., Scott D. E., Ryan T. J., Buhlmann K. A., Tuberville T. D., Metts B. S., and Winne C. T. (2000), «The global decline of reptiles, déjà vu amphibians», BioScience, 50(8), 653 – 666.

Hoffmann A. A. and Sgrò C. M. (2011), «Climate change and evolutionary adaptation», Nature, 470(7335), 479 – 485.

Hernandez P. A., Graham C. H., Master L. L., and Albert D. L. (2006), «The effect of sample size and species characteristics on performance of different species distribution modelling methods», Ecography, 29(5), 773 – 785.

Hijmans R. J., Guarino L., and Mathur P. (2012), DIVA-GIS: Manual. Version 7.5, http://www.diva-gis.org/docs/ DIVA-GIS$manual$7.pdf (accessed November 28, 2019).

Huey R. B., Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E., Álvarez Pérez H. J., and Garland T., Jr. (2009), «Why tropical forest lizards are vulnerable to climate warming», Proc. Roy. Soc. B. Biol. Sci., 276(1664), 1939 – 1948.

Jeung S., Park J., Yang D., and Kim B. (2019), «The future of extreme climate change in the Korean peninsula using National Standard climate change scenarios and the ETCCDI index», J. Korean Soc. Hazard. Mitig., 19(7), 105 – 115.

Jiménez-Valverde A. (2012), «Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling», Glob. Ecol. Biogeogr., 21(4), 498 – 507.

Jiménez-Valverde A., Lobo J. M., and Hortal J. (2008), «Not as good as they seem: the importance of concepts in species distribution modelling», Divers. Distr., 14(6), 885 – 890.

Karger D. N., Kessler M., Lehnert M., and Jetz W. (2021), «Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide», Nat. Ecol., 5(6), 854 – 862.

Lee J. W., Noh H. J., Lee Y. K., Kwon Y. S., Kim C. H., and Yoo J. C. (2014), «Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: inferring from a case study of Korea», Ecol. Evol., 4(18), 3689 – 3702.

Lobo J. M., Jiménez-Valverde A., and Real R. (2008), «AUC: a misleading measure of the performance of predictive distribution models», Glob. Ecol. Biogeogr., 17(2), 145 – 151.

Lourenço-de-Moraes R., Lansac-Toha F. M., Schwind L. T. F., Arrieira R. L., Rosa R. R., Terribile L. C., Lemes P., Rangel T. F., Diniz-Filho J. A. F., Bastos R. P., and Bailly D. (2019), «Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot», Sci. Rep., 9(1), 1 – 14.

Luiselli L. (2006), «Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns», Oikos, 114(2), 193 – 211.

Luiselli L., Filppi E., and Lena E. D. (2007), «Ecological relationship between sympatric Vipera aspis and Vipera ursinii in high-altitude habitats of Central Italy», J. Herpetol., 41(3), 378 – 384.

Martínez-Freiría F., Sillero N., Lizana M., and Brito J. C. (2008), «GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers», Divers. Distr., 14(3), 452 – 461.

Martínez-Freiría F. (2015), «Assessing climate change vulnerability for the Iberian viper Vipera seoanei», Basic Appl. Herpetol., 29, 61 – 80.

Maritz B., Penner J., Martins M., Crnobrnja-Isailović J., Spear S., Alencar L. R., and Greene H. W. (2016), «Identifying global priorities for the conservation of vipers», Biol. Conserv., 204, 94 – 102.

Michel C. L., Pastore J. H., and Bonnet X. (2013), «Impact of cool versus warm temperatures on gestation in the aspic viper (Vipera aspis)», Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 165(3), 338 – 342.

Ministry of Environment (2015), List of Prohibited Wildlife such as Capture and Harvesting, Seoul, Ministry of Environment.

Moritz C., Patton J. L., Conroy C. J., Parra J. L., White G. C., and Beissinger S. R. (2008), «Impact of a century of climate change on smallmammal communities in Yosemite National Park, USA», Science, 322(5899), 261 – 264.

NIBR (2020), Red Data Book of Republic of Korea (Amphibians and Reptiles), Incheon, pp. 110 – 117.

Ostertagova E., Ostertag O., and Kováč J. (2014), «Methodology and application of the Kruskal – Wallis test», Appl. Mech. Mater., 611, 115 – 120.

Parmesan C. (2006), «Ecological and evolutionary responses to recent climate change», Annu. Rev. Ecol. Evol. Syst., 37, 637 – 669.

Pimm S. L. (2008), «Biodiversity, climate change or habitat loss which will kill more species?» Curr. Biol., 18(3), 117 – 119.

Phillips S., Dudik M., and Schapire R. (2004), «Maximum entropy approach to species distribution modeling», in: Proc. of the 21st Int. Conf. on Machine Learning, p. 83.

Phillips S. J. and Dudll M. (2008), «Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation», Ecography, 31(2), 161 – 175.

Phillips S. J., Dudll M., Elith J., Graham C. H., Lehmann A., Leathwick J., and Ferrier S. (2009), «Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data», Ecol. Appl., 19(1), 181 – 197.

Pounds J. A., Fogden M. P. L., and Campbell J. H. (1999), «Biological response to climate change on a tropical mountain», Nature, 398(6728), 611 – 615.

Raxworthy C. J., Pearson R. G., Rabibisoa N., Rakotondrazafy A. M., Ramanamanjato J. B., Raselimanana A. P., and Stone D. A. (2008), «Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar», Glob. Chang. Biol., 14(8), 1703 – 1720.

Reinert H. K. and Rupert R. R. (1999), «Impacts of translocation on behavior and survival of Timber Rattlesnakes, Crotalus horridus», J. Herpetol., 33, 45 – 61.

Rugiero L., Milana G., Petrozzi F., Capula M., and Luiselli L. (2013), «Climate-change-related shifts in annual phenology of a temperate snake during the last 20 years», Acta Oecol., 51, 42 – 48.

R Development Core Team (2017), R: a Language and Environment for Statistical Computing. Vol. 55, pp. 275 – 286.

Stefano S., Marco M., Roberto S., and Augusto G. (2011), «A tribute to Hubert Saint Girons: niche separation between Vipera aspis and V. berus on the basis of distribution models», Amphibia–Reptilia, 32(2), 223 – 233.

Sinervo B., Mendez-de-la-Cruz F., Miles D. B., Heulin B., Bastiaans E., Villagrán-Santa Cruz M., and Sites J. W. (2010), «Erosion of lizard diversity by climate change and altered thermal niche», Science, 328(5980), 894 – 899.

Song J. Y. (2007), «Current status and distribution of reptiles in the Republic of Korea», Korean J. Environ. Biol., 25(2), 124 – 138.

Tewksbury J. J., Huey R. B., and Deutsch C. A. (2008), «Putting the heat on tropical animals», Science, 320(5881), 1296 – 1297.

Van Vuuren D. P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., and Rose S. K. (2011), «The representative concentration pathways: an overview», Clim. Change, 109, 5 – 31.

Wang H., Wang H., Xiao Y., Wang X., Sun L., Shi J., and Wu Y. (2015), «Low genetic diversity and moderate inbreeding risk of an insular endemic pit viper (Gloydius shedaoensis): Implication for conservation», J. Herpetol., 49(2), 190 – 199.

Wisz M. S., Hijmans R. J., Li J., Peterson A. T., Graham C. H., and Guisan A. (2008), «Effects of sample size on the performance of species distribution models», Divers. Distr., 14(5), 763 – 773.

Yun S., Lee J. W., and Yoo J. C. (2020), «Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus», Glob. Ecol. Conserv., 22, e00976.

Zacarias D. and Loyola R. (2019), «Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique», Clim. Change, 152(1), 195 – 207.




DOI: https://doi.org/10.30906/1026-2296-2022-29-5-262-274

Refbacks

  • There are currently no refbacks.



You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email sales@ivis.ru