Growth Layers and Its Complex Structure in a Common Species Under Uncommon Conditions: Pelophylax ridibundus in the Talysh Mountains

Sergey M. Lyapkov, Tatyana E. Kondratova, Roman A. Ivolga, Elena A. Kidova, Artem A. Kidov


In the Talysh Mountains, the marsh frog, Pelophylax ridibundus (Pallas, 1771), increases its distribution due to human activity. In the mountain forest belt, frogs inhabit flowing ponds with cold spring water. These reservoirs are characterized by a stable temperature regime: the water in them is kept at the level of 10 – 12°C in winter and does not fall below 6°C, and in summer does not rise above 18°C. Probably, the cold flow water of ponds in the mountain-forest belt of Talysh can cause some features of growth and maturation for P. ridibundus. The aim of our work was to study the features of the structure of growth layers including the variation in degree of expression of lines of arrested growth (LAGs) of the marsh frogs in ponds with cold flow water. Frogs were collected in the upper part of the Tangeru River gorge in Sym village of Astara District of Azerbaijan (480 m a.s.l.) in August 2018. In total, we studied skeletochronologically 8 females and 9 males. In contrast to the results of the tubular bones studies in the marsh frog presented in earlier works, the studied individuals are characterized by a more complex and diverse structure in the cross section of shin bones. All the revealed diversity of this structure can be divided into three groups. To the first group are relatively rare cases in which there are growth layers with wintering LAGs and additional growth layers but without additional LAGs. The second group includes more frequent cases in which there are growth layers not only with wintering LAGs but with additional LAGs differing discretely from wintering LAGs. The third group includes the rarest cases where there are growth layers with wintering LAGs and with additional LAGs without discrete difference from wintering LAGs. The revealed high variable structure of growth layers and distinctiveness of LAGs in P. ridibundus can be explained by unusual temperature regime in habitat of studied population and the existence of several activity period during a year. The most continuous period of low temperatures (February and March) corresponds to formation hibernation LAGs and dark rings in growth layers. Besides, period from early December to late January may be so cold that frog growth retard sufficiently or stop completely. The formation of more dark parts of growth layers or even several additional LAGs can correspond to this period.


Amphibia; Ranidae; skeletochronology; age; growth layers; lines of arrested growth

Full Text:



Arisoy A. G. and Başkale E. (2019), «Body size, age structure and survival rates in two populations of the Beyşehir frog Pelophylax caralitanus», Herpetozoa, 32, 195 – 201.

Çiçek K., Kumaş M., Ayaz D., Mermer A., and Engin Ş. D. (2011), «Age structure of levant water frog, Pelophylax bedriagae, in lake Suluklu (Western Anatolia, Turkey)», Basic Appl. Ecol., 25, 73 – 80.

Erismis U. C. (2017), «Age, size, and growth of the Turkish endemic frog Pelophylax caralitanus (Anura: Ranidae)», Anat. Rec., 301(7), 1224 – 1234.

Esteban M., Garcia-Paris M., and Castanet J. (1996), «Use of bone histology in estimating the age of frogs Rana perezi) from a warm temperate climate area», Can. J. Zool., 74, 1914 – 1921.

Fominykh A. S. (2009), «On distribution limits of marsh frog (Rana ridibunda Pallas, 1771) in middle Ural region», Curr. Stud. Herpetol., 9(1 – 2), 70 – 74 [in Russian].

Fominykh A. S. and Lyapkov S. M. (2011), «The formation of new characteristics in life cycle of the marsh frog (Rana ridibunda) in thermal pond conditions», Zh. Obshch. Biol., 72(6), 403 – 421 [in Russian].

Gül S., Özdemir N., Üzüm N., Olgun K., and Kutrup B. (2011), «Body size and age structure of Pelophylax ridibundus populations from two different altitudes in Turkey», Amphibia–Reptilia, 32(2), 287 – 292.

Ibragimova D. V. and Lyapkov S. M. (2018), «Demographic and morphometric characteristics of the moor frog (Rana arvalis) from a transformed habitat in the Khanty-Mansy Autonomous Region – Yugra», Zool. Zh., 97(2), 181 – 189 [in Russian].

Iturra-Cid M., Ortiz J. C., and Ibarguengoytia N. R. (2010), «Age, size, and growth of the Chilean frog Pleurodema thaul (Anura: Leiuperidae): latitudinal and altitudinal effects», Copeia, 4, 609 – 617.

Kidov A. A. (2012), «Hibernation of Iranian long-legged wood frog (Rana macrocnemis pseudodalmatina Eiselt et Schmidtler, 1971) (Amphibia, Anura: Ranidae) in Talysh Mountains», Estestv. Tekhn. Nauki Moscow, 58(2), 102 – 105 [in Russian].

Kidov A. A. (2016), «Distribution of the marsh frog, Pelophylax ridibundus (Pallas, 1771) in southeastern Azerbaijan», Dokl. Tambov. Univ. Ser. Estestv. Tekhn. Nauki, 19(1), 194 – 196 [in Russian].

Kidov A. A., Matushkina K. A., and Litvinchuk S. N. (2020), «Distribution and conservation status of the Eichwald’s toad, Bufo eichwaldi in Azerbaijan», Russ. J. Herpetol., 27(1), 11 – 18.

Kidov A. A., Zamaletdinov R. I., Matushkina K. A., and Mikhailova R. I. (2018), «Notes on study of age and growth of the Hyrcanian frog, Rana pseudodalmatina Eiselt et Schmidtler, 1971 in the Talysh Mountains», Russ. J. Herpetol., 25(3), 183 – 188.

Kleinenberg S. E. and Smirina E. M. (1969), «A contribution to the method of age determination in amphibians», Zool. Zh., 48, 1090 – 1094 [in Russian].

Klevezal G. A. and Smirina E. M. (2016), «Recording structures of terrestrial vertebrates. A sketch of history and the current state of investigations», Zool. Zh., 95(8), 872 – 896 [in Russian].

Kumbar S. M. and Lad S. B. (2017), «Determination of age and longevity of road mortal Indian common toad Duttaphrynus melanostictus by skeletochronology», Russ. J. Herpetol., 24(3), 217 – 222.

Kumbar S. M. and Pancharatna K. (2001), «Determination of age, longevity and age at reproduction of the frog Microhyla ornata by skeletochronology», J. Biosci., 26(2), 265 – 270.

Kyriakopoulou-Sklavounou P., Stylianou P., and Tsiora A. (2008), «A skeletochronological study of age, growth and longevity in a population of the frog Rana ridibunda from southern Europe», Zoology, 111(1), 30 – 36.

Paton D., Angeles J., Sequeros E., Perez-Campo R., Lopez-Torres M., and Barja de Quiroga G. (1991), «Seasonal age and sex structure of Rana perezi assessed by skeletochronology», J. Herpetol., 25, 389 – 394.

Lada G. A. and Teplyakov A. A. (2014), «Characteristics of biology of marsh frog Pelophylax ridibundus (Pallas, 1771) in conditions of thermal pollution», Dokl. Tambov. Univ. Ser. Estestv. Tekhn. Nauki, 19(1), 194 – 196 [in Russian].

Liao W. B., Zhou C. Q., Yang Z. S., Hu J. C., and Lu X. (2010), «Age, size and growth in two populations of the darkspotted frog Rana nigromaculata at different altitudes in Southwestern China», Herpetol. J., 20(2), 77 – 82.

Lyapkov S. M., Ermakov O. A., and Titov S. V. (2017), «Distribution and origin of two forms of the marsh frog Pelophylax ridibundus complex (Anura, Ranidae) from Kamchatka, based on mitochondrial and nuclear DNA data», Zool. Zh., 96(11), 1384 – 1391 [in Russian].

Lyapkov S. M., Kidov A. A., Stepankova I. V., Afrin K. A., and Litvinchuk S. N. (2020), «Age structure and growth in the Lataste’s toad, Bufotes latastii (Anura, Bufonidae)», Russ. J. Herpetol., 27(3), 165 – 171.

Lyapkov S. M., Kidov A. A., Stepankova I. V., Afrin K. A., and Litvinchuk S. N. (2021), «Age structure and growth in the Zamda toad, Bufotes zamdaensis (Anura, Bufonidae)», Russ. J. Herpetol., 28(3), 138 – 144.

Mao M., HuangY., Mi Z. P., Liu Y. H., and Zhou C. Q. (2012), «Skeletochronological study of age, longevity and growth in a population of Rana nigromaculata (Amphibia: Anura) in Sichuan, China», Asian Herpetol. Res., 3(3), 258 – 264.

Pancharatna K. and Kumbar S. M. (2009), «Age structure of populations of Indian skipper frog, Euphlyctis cyanophlyctis around Dharwad (India)», J. Adv. Zool., 30(2), 60 – 64.

Phadmacanty N. L. P. R. and Kurniati H. (2019), «Determination of the age of the paddy field frog, Fejervarya cancrivora (Anura: Dicroglossidae) by using skeletochronology», Biodiversitas, 20(9), 2739 – 2743.

Romanova E. B., Ryabinina E. S., and Lyapkov S. M. (2020), «Body size, age, morphophysiological and cytogenetic characteristics in populations of Pelophylax ridibundus (Amphibia, Ranidae) from polluted thermal waters of Kamchatka», Zool. Zh., 99(8), 924 – 937 [in Russian].

Rozenblut B. and Ogielska M. (2005), «Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination», J. Morphol., 265, 304 – 317.

Sinsch U. (2015), «Review: Skeletochronological assessment of demographic life-history traits in amphibians», Herpetol. J., 25, 5 – 13.

Smirina E. M. (1989), «A technique for determining the age of amphibians and reptiles by layers in bones», in: A Guide to the Study of Amphibians and Reptiles, pp. 144 – 153 [in Russian].

Smirina E. M. (1994), «Age determination and longevity in Amphibians», Gerontology, 40, 133 – 146.

Smirina E. M. and Makarov A. N. (1987), «On the establishment of the correspondence of the number of layers in tubular bones in amphibians to the age of individuals», Zool. Zh., 66(4), 599 – 604 [in Russian].

Smirina E. M., Serbinova I. A., and Makarov A. N. (1994), «Some complicated cases of age determination using the annual layers of bones in amphibians (at the example of long-tailed salamander Onychodactylus fischeri (Amphibia, Hynobiidae))», Zool. Zh., 73(10), 72 – 81 [in Russian].

Socha M. and Ogielska M. (2010), «Age structure, size and growth rate of water frogs from central European natural Pelophylax ridibundusPelophylax esculentus mixed populations estimated by skeletochronology», Amphibia–Reptilia, 31(2), 239 – 250.

Tsiora A. and Kyriakopoulou-Sklavounou P. (2002), «A skeletochronological study of age and growth in relation to adult size in the water frog Rana epeirotica», Zool. Jena, 105(1), 55 – 60.

Yilmaz N., Kutrup B., Çobanoglu Ü., and Özoran Y. (2005), «Age determination and some growth parameters of a Rana ridibunda population in Turkey», Acta Zool. Acad. Sci. Hung., 51(1), 67 – 74.



  • There are currently no refbacks.

You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email