Open Access Open Access  Restricted Access Subscription or Fee Access

Comparative Analyses of Two Nearly Complete Mitochondrial Genomes of the Liu’s Skink, Plestiodon liui, from South and North Sides of the Yangtze River

Na Wu, Minli Chen, Jinlong Liu, Bo Cai, Song Wang, Minggang Xu, Xianguang Guo


In this study we amplified and sequenced the nearly complete mitochondrial DNA of an individual of the Liu’s skink, Plestiodon liui, from south of the Yangtze River. The obtained mitochondrial genome was 17, 945 bp in length, comprising 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and an incomplete control region (D-loop). Another nearly complete mitogenome of P. liui, from north of the Yangtze River, was retrieved from GenBank and used for comparative analyses. The results showed that the genome organization, base composition, codon usage, and gene arrangement of the mitochondrial genomes for the two individuals of P. liui were highly similar to each other. Twelve out of 13 PCGs initiated with canonical start codon (ATG), while COX1 started with GTG. The codon usage analysis revealed a preferential use of the LeuCUN, Pro, and Thr codons with the A/U ending. Among the 22 tRNA genes, only tRNA-SerAGY was not folded into a typical cloverleaf secondary structure and had no recognizable DHU stem. The phylogenetic tree inferred from Bayesian inference and maximum likelihood approaches strongly supported that the two individuals of P. liui clustered together, and formed the sister taxon to a clade of P. capito and P. tunganus. All PCGs had undergone a strong purifying selection, whereas 27 residues of the ATP6, COX2, Cytb, ND3, ND4, ND5, ND6 genes might have undergone positive selection. Bayesian molecular dating indicated that the split between P. liui and P. capitoP. tunganus was approximately 9.62 million years ago (Ma). Meanwhile, the coalescence time of the two individuals of P. liui was estimated to be 2.26 Ma with 95% highest posterior density of 1.32 – 3.28 Ma, which fell within the timeframe for the Yangtze River run-through between the late Pliocene to the middle Pleistocene. This finding implied that the Yangtze River run-through had played an important role in the diversification of the Liu’s skink.


mitochondrial genome; Plestiodon liui; Scincidae; phylogeny; divergence time; purifying selection; Yangtze River

Full Text:



Aljanabi S. M. and Martinez I. (1997), «Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques», Nucl. Acids Res., 25(22), 4692 – 4693.

Avise J. C., Arnold J., Ball R. M., Bermingham E., Lamb T., and Neigel J. E. (1987), «Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics», Annu. Rev. Ecol. Syst., 18(1), 489 – 522.

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., and Stadler P. F. (2013), «MITOS: Improved de novo metazoan mitochondrial genome annotation», Mol. Phylogen. Evol., 69(2), 313 – 319.

Boore J. L. (1999), «Animal mitochondrial genomes», Nucl. Acids Res., 27(8), 1767 – 1780.

Brandley M. C., Ota H., Hikida T., de Oca A. N. M., Fería-Ortíz M., Guo X., and Wang Y. (2012), «The phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae», Zool. J. Linn. Soc., 165(1), 163 – 189.

Brandley M. C., Schmitz A., and Reeder T. W. (2005), «Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards», Syst. Biol., 54(3), 373 – 390.

Brandley M. C., Wang Y., Guo X., de Oca A. N. M., Fería-Ortíz M., Hikida T., and Ota H. (2011), «Accommodating heterogeneous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards», Syst. Biol., 60(1), 3 – 15.

Brown W. M., George M. J., and Wilson A. C. (1979), «Rapid evolution of animal mitochondrial DNA», Proc. Natl. Acad. Sci. USA, 76(4), 1967 – 1971.

Cai B., Yao M., and Guo X. (2019), «First record of Plestiodon liui from Henan province, China and analysis of its phylogenetic placement», Chin. J. Zool., 54(5), 668 – 677 [in Chinese with English abstract].

Chen J., Wang Z. H., Chen Z. Y., Wei Z. X., Wei T. Y., and Wei W. (2009) «Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea», Geomorphology, 113(3), 129 – 136.

Chen M., Liu J., Chen D., and Guo X. (2019), «The complete mitochondrial genome of a blue tailed skink (Plestiodon tunganus) endemic to Sichuan Basin», Mitochondr. DNA. Part B, 4(1), 1109 – 1110.

Chen M., Liu J., Chen D., and Guo X. (2020), «Complete mitochondrial genome of a blue-tailed skink Plestiodon capito (Reptilia, Squamata, Scincidae) and comparison with other Scincidae lizards», Genetica, 148, 229 – 241.

Dong Y., Wang H., Han G., Ke C., Zhan X., and Nakano T. (2012), «The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast», PLoS One, 7(4), e36178.

Drummond A. J. and Rambaut A. (2007), «BEAST: Bayesian evolutionary analysis by sampling trees», BMC Evol. Biol., 7(1), 214.

Du X. W., Cai S. S., Yu C. G., Jiang X. Q., Lin L. S., Gao T. X., and Han Z. Q. (2016), «Population genetic structure of mantis shrimps Oratosquilla oratoria: testing the barrier effect of the Yangtze River outflow», Biochem. Syst. Ecol., 66, 12 – 18.

Erixon P., Svennblad B., Britton T., and Oxelman B. (2003), «Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics», Syst. Biol., 52(5), 665 – 673.

Fan D. D. and Li C. X. (2007), «Reviews on researches of timing of the Yangtze draining the Tibetan plateau to the east China sea», Mar. Geol. Qua. Geol., 27(2), 125 – 135 [in Chinese with English abstract].

Fan D. D., Li C. X., Kazumi Y., Zhou B. C., Li B. H., Wang Q., Yang S. Y., Deng B., and Wu G. X. (2005), «Monazite age spectra in the late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time», Sci. China Ser. D, 48(10), 1718 – 1727.

Garey J. R. and Wolstenholme D. R. (1989), «Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNASer AGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons», J. Mol. Evol., 28(5), 374 – 387.

Geng Q., Yao Z., Yang J., He J., and Liu H. (2015), «Effect of Yangtze River on population genetic structure of the relict plant Parrotia subaequalis in eastern China», Ecol. Evol., 5(20), 4617 – 4627.

Gouy M., Guindon S., and Gascuel O. (2010), «SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building», Mol. Biol. Evol., 27(2), 221 – 224.

Gu J. (2018), «Geochemical finger prints on China’s Yangtze River channelization into the sea and its provenance implications», Adv. Earth Sci., 33(5), 506 – 516 [in Chinese with English abstract].

Harrison R. G. (1989), «Animal mitochondrial DNA as a genetic marker in population and evolutionary biology», Trends Ecol. Evol., 4(1), 6 – 11.

Hikida T. and Zhao E. M. (1989), «Eumeces liui: a new species of blue-tailed skink (Lacertilia: Scincidae) from China», Copeia, 1989(1), 110 – 114.

Huelsenbeck J. P. and Rannala B. (2004), «Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models», Syst. Biol., 53(6), 904 – 913.

Hurst L. D. (2002), «The Ka/Ks ratio: diagnosing the form of sequence evolution», Trends Genet., 18(9), 486 – 487.

Jia J. T., Zheng H. B., Huang X. T., Wu F. Y., Yang S. Y., Wang K., and He M. Y. (2010), «Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River», Chin. Sci. Bull., 55(15), 1520 – 1528.

Kazutaka K. and Standley D. M. (2013), «MAFFT multiple sequence alignment software version 7: improvements in performance and usability», Mol. Biol. Evol., 30(4), 772 – 780.

Kumar S., Stecher G., and Tamura K. (2016), «MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets», Mol. Biol. Evol., 33(7), 1870 – 1874.

Kumazawa Y. (2007), «Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations», Gene, 388(1 – 2), 19 – 26.

Kumazawa Y. and Endo H. (2004), «Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements», DNA Res., 11(2), 115 – 125.

Kumazawa Y. and Nishida M. (1999), «Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles», Mol. Biol. Evol., 16(6), 784 – 792.

Lanfear R., Frandsen P. B., Wright A. M., Senfeld T., and Calcott B. (2017), «PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses», Mol. Biol. Evol., 34(3), 772 – 773.

Li J., Xie S., and Kuang M. (2001), «Geomorphic evolution of the Yangtze gorges and the time of their formation», Geomorphology, 41(2), 125 – 135.

Liu J., Yu J., Zhou M., and Yang J. (2019), «Complete mitochondrial genome of Japalura flaviceps: deep insights into the phylogeny and gene rearrangements of Agamidae species», Int. J. Biol. Macromol., 125, 423 – 431.

Lowe T. M. and Chan P. P. (2016), «tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes», Nucl. Acids Res., 44(W1), W54 – W57.

Minh Q., Nguyen M., and von Haeseler A. (2013), «Ultrafast approximation for phylogenetic bootstrap», Mol. Biol. Evol., 30(5), 1188 – 1195.

Moritz C., Dowling T. E., and Brown W. M. (1987), «Evolution of animal mitochondrial DNA: relevance for population biology and systematics», Annu. Rev. Ecol. Syst., 18, 269 – 292.

Muse S. V. (2000), «Examining rates and patterns of nucleotide substitution in plants», Plant Mol. Biol., 42(1), 25 – 43.

Nguyen L. T., Schmidt H. A., von Haeseler A., and Minh B. Q. (2015), «IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies», Mol. Biol. Evol., 32(1), 268 – 274. -

Park J., Koo K. S., Kim I. H., and Park D. (2016), «Complete mitochondrial genomes of Scincella vandenburghi and S. huanrenensis (Squamata: Scincidae)», Mitochondr. DNA. Part B, 1(1), 237 – 238.

Perna N. T. and Kocher T. D. (1995), «Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes», J. Mol. Evol., 41(3), 353 – 358.

Pyron R. A., Burbrink F. T., and Wiens J. J. (2013), «A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes», BMC Evol. Biol., 13, 93.

Rambaut A., Drummond A. J., Dong X., Guy B., and Suchard M. A. (2018), «Posterior summarisation in Bayesian phylogenetics using tracer 1.7», Syst. Biol., 67(5), 901 – 904.

Richardson N. J., Densmore A. L., Seward D., Wipf M., and Yong L. (2010), «Did incision of the Three Gorges begin in the Eocene», Geology, 38(6), 551 – 554.

Riddle A. B. (2009), «Phylogeography: retrospect and prospect», J. Biogeogr., 36(1), 3 – 15.

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., and Huelsenbeck J. P. (2012), «MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space», Syst. Biol., 61(3), 539 – 542.

Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., and Sánchez-Gracia A. (2017), «DnaSP 6: DNA sequence polymorphism analysis of large data sets», Mol. Biol. Evol., 34(12), 3299 – 3302.

Saccone C., Giorgi C. D., Gissi C., Pesole G., and Reyes A. (1999), «Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system», Gene, 238(1), 195 – 209.

Shi W. B., Wang H., Zhu L. F., Zhu Q. Q., Han D. M., Chang Q., and Zhang B. W. (2010), «The genetic divergence and gene flow pattern of two muntjac deer (Muntiacus reevesi) populations, Wannan and Dabie Mountains, from the effect of Yangtze River and the late Pleistocene glacial oscillations», Acta Theriol. Sin., 30(4), 390 – 399 [in Chinese with English abstract].

Shu Q., Zhang M., Zhao Z., Chen H., and Li J. (2008), «Sedimentary record from the XH-1 core in North Jiangsu Basin and its implication on the Yangtze River run-through time», J. Stratigraphy, 32(3), 308 – 314 [in Chinese with English abstract].

Shu Q., Zhao Z., Zhao Y., Chen Y., and Zhan M. (2021), «Magnetic properties of late Cenozoic sediments in the Subei Basin: Implications for the Yangtze River run-through time», J. Coastal Res., 37(1), 122 – 131.

Song T., Zhang C., Huang X., and Zhang B. (2016), «Complete mitochondrial genome of Eumeces elegans (Squamata: Scincidae)», Mitochondr. DNA. Part A, 27(1), 719 – 720.

Tang X. S., Yang D. C., and Huang S. (2019a), «The complete mitochondrial genome of Sphenomorphus incognitus (Reptilia: Scincidae)», Mitochondr. DNA. Part B, 4(1), 307 – 308.

Tang X. S., Yang D. C., Lin Y. J., and Dai L. L. (2019b), «The complete mitochondrial genome of Sphenomorphus indicus (Reptilia: Scincidae)», Mitochondr. DNA. Part B, 4(2), 2727 – 2728.

Uetz P., Freed P., and Hošek J. (eds.) (2020), The Reptile Database, (accessed 20 May 2021).

Wang K., Ren J., Chen H., Lyu Z., Guo X., Jiang K., Chen J., Li J., Guo P., Wang Y., and Che J. (2020), «The updated checklists of amphibians and reptiles of China», Biodiv. Sci., 28(2), 189 – 218 [in Chinese with English abstract].

Wei C., Liu C., and Li C. (2017), «Research advances in ESR provenance tracing methods of quartz in sediments», Adv. Earth Sci., 32(10), 1062 – 1071(In Chinese with English abstract].

Wiens J. J., Hutter C. R., Mulcahy D. G., Noonan B. P., Townsend T. M., Sites J. W., and Reeder T. W. (2012), «Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species», Biol. Lett., 8(6), 1043 – 1046.

Wilcox T. P., Zwickl D. J., Heath T. A., and Hillis D. M. (2002), «Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support», Mol. Phylogen. Evol., 25(2), 361 – 371.

Wolstenholme D. R. (1992), «Animal mitochondrial DNA: structure and evolution», Int. Rev. Cytol., 141, 173 – 216.

Wu N., Cai B., Chen M., and Guo X. (2020), «Next-generation sequencing yields a nearly complete mitochondrial genome of Plestiodon liui (Reptilia, Squamata, Scincidae) endemic to China», Mitochondr. DNA. Part B, 5(3), 3655 – 3656.

Xiang F., Zhu L. D., and Wang C. S. (2007), «Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River», Geomorphology, 85(3), 249 – 258.

Yang D. (1988), «Genetic mechanism of the alluvial terraces along the Three Gorges course of the Changjiang River», Acta Geogr. Sin., 43(2), 120 – 126 [in Chinese with English abstract].

Yang Z. (2007), «PAML 4: Phylogenetic analysis by maximum likelihood», Mol. Biol. Evol., 24(8), 1586 – 1591.

Yang Z., Wong W. S., and Nielsen R. (2005), «Bayes empirical Bayes inference of amino acid sites under positive selection», Mol. Biol. Evol., 22(4), 1107 – 1118.

Zhang C., Sun X., Chen L., Xiao W., Zhu X., Xia Y., Chen J., Wang H., and Zhang B. (2016), «The complete mitochondrial genome of Eumeces chinensis (Squamata: Scincidae) and implications for Scincidae taxonomy», Mitochondr. DNA. Part A, 27(6), 4691 – 4692.

Zhang P. and Wake D. B. (2009), «Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes», Mol. Phylogen. Evol., 53(2), 492 – 508.

Zhang Z. Y., Zheng X. M., and Ge S. (2007), «Population genetic structure of Vitex negundo (Verbenaceae) in Three-Gorge area of the Yangtze River: the riverine barrier to seed dispersal in plants», Biochem. Syst. Ecol., 35(8), 506 – 516.

Zheng H., Clift P. D., Wang P., Tada R., Jia J., He M., and Jourdan F. (2013), «Pre-Miocene birth of the Yangtze River», Proc. Natl. Acad. Sci. USA, 110(19), 7556 – 7561.

Zheng Y. and Wiens J. J. (2016), «Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on genes and species», Mol. Phylogen. Evol., 94, 537 – 547.



  • There are currently no refbacks.