Open Access Open Access  Restricted Access Subscription or Fee Access

False Spring in the Southeastern European Russia and Anomalies of the Phenology of Spawing Migrations of the Pallas’ Spadefoot Toad Pelobates vespertinus (Pelobatidae, Amphibia)

Mikhail V. Yermokhin, Vasily G. Tabachishin

Abstract


In March 2020, an anomalously early start of the spawning migrations of Pelobates vespertinus was established in the Medveditsa River valley. Males of this species, emerging from a state of hibernation, were observed in the shallow waters of the lake Troynoye on March 13, one month ahead of the long-term mean date over the past 30 years and almost two weeks before the earliest recorded date. From 1892 to 1990 the phenological scenario of a false spring was realized six times only, while seven times — over the past 30 years (1991 – 2020). A second feature of the development of spring processes by the type of false spring in 1990 – 2020 is repeated recurrence of return cooling. The emergence of discreteness (discontinuity) of the spawning migration period against the background of early development of spring processes and repeated periods of return cold is a relatively new feature of the phenology of anuran amphibians. The cumulative proportion of P. vespertinus males arriving at their spawning biotopes from the first to the fifth day from the date of the start of spawning migrations of the species increases on mean (median) from 4 to 38% of the total number of mature males. In 2014, an abrupt change in the proportion of males who came to spawning biotopes during the first five days was found: in 2009 – 2013 was less than a quarter of the total number of males (15 – 23%), and in 2014 – 2017 it was half or more (43 – 70%). Consequences of such phenological abnormalities can become an additional factor in reducing the reproductive success of P. vespertinus and degradation of their local populations. In addition, the abnormal development of spring processes requires correction of census technique and analysis of the sex structure of P. vespertinus populations.

Keywords


anuran amphibian; Pallas spadefoot toad; spawning migration; phenology; false spring

Full Text:

PDF

References


Allstadt A. J., Vavrus S. J., Heglund P. J., Pidgeon A. M., Thogmartin W. E., and Radeloff V. C. (2015), «Spring plant phenology and false springs in the conterminous US during the 21st century», Environm. Res. Lett., 10(10), 104008.

Araújo M. B., Thuiller W., Pearson R. G. (2006), «Climate warming and the decline of amphibians and reptiles in Europe», J. Biogeogr., 33(10), 1712 – 1728.

Arietta A. Z. A., Freidenburg L. K., Urban M. C., Rodrigues S. B., Rubinstein A., and Skelly D. K. (2020), «Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: a 20-year study», Ecography, 43, 1791 – 1800.

Augspurger C. K. (2013), «Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing», Ecology, 94(1), 41 – 50.

Beebee T. J. C. and Griffiths R. A. (2005), «The amphibian decline crisis: A watershed for conservation biology?» Biol. Conserv., 125(3), 271 – 285.

Berman D. I., Meshcheryakova E. N., Bulakhova N. A., Yermokhin M. V., and Tabachishin V. G. (2019), «Cold-hardiness of the common spadefoot Pelobates fuscus (Pelobatidae, Anura, Amphibia)», Cryo-Letters, 40(5), 284 – 290.

Blaustein A. R., Belden L. K., and Olson D. H. (2002), «Amphibian phenology and climate change the effects of climatic warming on the seasonal timing of animal and plant activities are receiving increase», Conserv. Biol., 16(6), 1454 – 1455.

Carey C. and Alexander M. A. (2003), «Climate change and amphibian declines: is there a link?» Divers. Distrib., 9(2), 111 – 121.

Chamberlain C. J., Cook B. I., García de Cortázar-Atauri I., and Wolkovich E. M. (2019), «Rethinking false spring risk», Global Change Biol., 25, 2209 – 2220.

Cohen J. M., Lajeunesse M. J., and Rohr J. R. (2018), «A global synthesis of animal phenological responses to climate change», Nat. Clim. Change, 8, 224 – 228.

Corn P. S. (2005), «Climate change and amphibians», Animal Biodivers. Conserv., 28(1), 59 – 67.

Dufresnes C., Strachinis I., Tzoras E., Litvinchuk S. N., and Denoël M. (2019a), «Call a spade a spade: Taxonomy and distribution of Pelobates, with description of a New Balkan endemic», ZooKeys, 859, 131 – 158.

Dufresnes C., Strachinis I., Suriadna N., Mykytynets G., Cogălniceanu D., Székely P., Vukov T., Arntzen J. W., Wielstra B., Lymberakis P., Geffen E., Gafny S., Kumlutaş Y., Ilgaz Ç., Candan K., Mizsei E., Szabolcs M., Kolenda K., Smirnov N., Géniez Ph., Lukanov S., Crochet P.-A., Dubey S., Perrin N., Litvinchuk S. N., and Denoël M. (2019b), «Phylogeography of a cryptic speciation continuum in Eurasian Spadefoot toads (Pelobates)», Mol. Ecol., 28(13), 3257 – 3270.

Ficetola G. F. and Maiorano L. (2016), «Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance», Oecologia, 181(3), 683 – 693.

Green D. M. (2017), «Amphibian breeding phenology trends under climate change: predicting the past to forecast the future», Global Change Biol., 23(2), 646 – 656.

Green T., Das E., and Green D. M. (2016), «Springtime emergence of overwintering toads, Anaxyrus fowleri, in relation to environmental factors», Copeia, 104(2), 393 – 401.

Hammer O., Harper D. A. T., and Ryan P. D. (2001), «PAST: Paleontological statistics software package for education and data analysis», Paleontol. Electr., 4(1), 1 – 9.

Hels T. and Andersen K. N. (1999), «Tolerance of low temperatures in Pelobates fuscus eggs», Br. Herpetol. Soc. Bull., 68, 36 – 38.

Kaczmarski M., Szala K., and Kloskowski J. (2019), «Early onset of breeding season in the green toad Bufotes viridis in Western Poland», Herpetozoa, 32, 109 – 112.

Kaybeleva E. I., Yermokhin M. V., Kondratiev E. N., Mosolova E. Yu., Tabachishin V. G., and Shlyakhtin G. V. (2019), «Amphibian scientific collection of the Zoological Museum of Saratov State University as the basis for the regional cadastre», Curr. Studies Herpetol., 19(3 – 4), 95 – 124 [in Russian].

Kharouba H. M. and Wolkovich E. M. (2020), «Disconnects between Ecological Theory and Data in Phenological Mismatch Research», Nat. Clim. Change, 10(5), 406 – 415.

Klaus S. P. and Lougheed S. C. (2013), «Changes in breeding phenology of Eastern Ontario frogs over four decades», Ecol. Evol., 3(4), 835 – 845.

Lamichhane J. R. (2021), «Rising risks of late-spring frosts in a changing climate», Nat. Clim. Change, 11(7), 554 – 555.

Loman J. (2009), «Primary and secondary phenology. Does it pay a frog to spawn early?» J. Zool., 279(1), 64 – 70.

Marino G. P., Kaiser D. P., Gu L., and Ricciuto D. M. (2011), «Reconstruction of false spring occurrences over the southeastern United States, 1901 – 2007: an increasing risk of spring freeze damage?» Environm. Res. Lett., 6(2), 024015.

Murillo-Rincón A. P., Kolter N. A., Laurila A., and Orizaola G. (2017), «Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian», J. Animal Ecol., 86(1), 128 – 135.

Neveu A. (2009), «Incidence of climate on common frog breeding: Long-term and short-term changes», Acta Oecol., 35(5), 671 – 678.

Oldham R. S. (1969), «Initiation of breeding behavior in the American toad, Bufo americanus», Can. J. Zool., 47, 1083 – 1086.

Polukonova A. V., Djomin A. G., Polukonova N. V., Yermokhin M. V., and Tabachishin V. G. (2013), «A molecular-genetic study of spadefoot toad Pelobates fuscus (Laurenti, 1768) local populations from the Medveditsa river valley (Saratov oblast’) by mtDNA – cytB gene», Curr. Studies Herpetol., 13(3 – 4), 117 – 121 [in Russian].

Reading C. (1998), «The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo», Oecologia, 117, 469 – 475.

Richter-Boix A., Llorente G. A., and Montori A. (2006), «Breeding phenology of an amphibian community in a Mediterranean area», Amphibia-Reptilia 27(4), 549 – 559.

Scott W. A., Pithart D., and Adamson J. K. (2008), «Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria», J. Herpetol., 42(1), 89 – 96.

Sheridan J. A., Caruso N. M., Apodaca J. J., and Rissler L. J. (2018), «Shifts in frog size and phenology: testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming», Ecol. Evol., 8(2), 1316 – 1327.

Tabachishin V. G. and Yermokhin M. V. (2020), «Abnormally early nesting of Acanthis cannabina (Linnaeus, 1758) (Fringillidae, Aves) in the Latryk river valley (Saratov oblast)», Povolzh. Zh. Ékol., 3, 367 – 373 [in Russian].

Terhivuo J. (1988), «Phenology of spawning for the Common Frog (Rana temporaria L.) in Finland from 1846 to 1986», Ann. Zool. Fenn., 25(3), 165 – 175.

Tryjanowski, P., Rybacki M., and Sparks T. (2003), «Changes in the first spawning dates of common frogs and common toads in western Poland in 1978 – 2002», Ann. Zool. Fenn., 40(6), 459 – 464.

Walpole A. A., Bowman J., Tozer D. C., and Badzinski D. S. (2012), «Community-level response to climate change: shifts in anuran calling phenology», Herpetol. Conserv. Biol., 7(2), 249 – 257.

Yermokhin M. V. and Tabachishin V. G. (2011), «Abundance accounting result convergence of Pelobates fuscus (Laurenti, 1768) migrating toadlets at full and partial enclosing of a spawning waterbody by drift fences with pitfalls», Curr. Studies Herpetol., 11(3 – 4), 121 – 131 [in Russian].

Yermokhin M. V. and Tabachishin V. G. (2021), «An abnormally early hibernation ending of the Red-bellied toad (Bombina bombina) (Discoglossidae, Anura) in the populations of the Medveditsa river valley (Saratov oblast’)», Povolzh. Zh. Ékol., 1, 89 – 96 [in Russian].

Yermokhin M. V., Tabachishin V. G., and Ivanov G. A. (2014), «Spawning migration phenology of spadefoot toad — Pelobates fuscus (Pelobatidae, Amphibia) in Medveditsa river valley (Saratov oblast’)», Povolzh. Zh. Ékol., 3, 342 – 350 [in Russian].

Yermokhin M. V., Tabachishin V. G., and Ivanov G. A. (2015), «Spawning migration phenology of the spadefoot toad Pelobates fuscus (Pelobatidae, Amphibia) in the valley of the Medveditsa River (Saratov Oblast)», Biol. Bull., 42(10), 931 – 936.

Yermokhin M. V., Tabachishin V. G., and Ivanov G. A. (2016), «Long-term dynamics of the size-weight and sexual structure in populations of Pelobates fuscus (Anura, Pelobatidae) in the Medveditsa river valley (Saratov oblast’)», Curr. Studies Herpetol., 16(3 – 4), 113 – 122 [in Russian].

Yermokhin M. V., Tabachishin V. G., and Ivanov G. A. (2017a), «Structural dynamics of the spawning anuran taxocenoses in Floodplain lakes of the Medveditsa river valley (Saratov oblast’)», Curr. Studies Herpetol., 17(3 – 4), 147 – 156 [in Russian].

Yermokhin M. V., Tabachishin V. G., and Ivanov G. A. (2017b), «Phenological changes in the wintering of Pelobates fuscus (Pelobatidae, Amphibia) in the climate transformation conditions in the Northern Lower Volga Region», Biol. Bull., 44(10), 1215 – 1227.

Yermokhin M. V., Ivanov G. A., and Tabachishin V. G. (2019), «Structure transformation of the anuran amphibian spawning communities in floodplain lakes of the Medveditsa river valley (Saratov oblast’) under conditions of long-term reduction of water content», Povolzh. Zh. Ékol., 4, 404 – 417.




DOI: https://doi.org/10.30906/1026-2296-2022-29-4-206-214

Refbacks

  • There are currently no refbacks.



You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email sales@ivis.ru