Open Access Open Access  Restricted Access Subscription or Fee Access

Living in Patchy Habitats: Substrate Selection by Basking Sympatric Lizards in Contrasted Anthropogenic Habitats in Western France

Roger Meek, Luca Luiselli


The influence of temperature on the physiological processes in reptiles is well known, for example growth, reproduction and muscular energy are all temperature dependent. However, there may be constraints on the ability of a reptile to harness thermal energy, particularly during cold seasons in the temperate zones. Substrate selection is a key factor in enhancing thermoregulation since it can enhance rate of heat uptake. For example, wood substrates are known to increase rates of heat gain in basking reptiles enabling earlier attainment of optimum body temperatures compared to other substrate types, which enables increased time available for other activities. In this paper we describe substrate use for basking in populations of Lacerta bilineata and Podarcis muralis in a hedgerow and a population of Podarcis muralis in a suburban garden in western France. The proportions of substrate used were compared against a null model of substrate availability. When different substrates were pooled based on material similarities both species were recorded in greater frequency on wood based materials in comparison to their availability compared to non-wood substrates. However at a finer level, in comparison to the null model of substrate availability (fallen tree branches, tree stumps, open ground etc), P. muralis showed strong substrate selection whereas L. bilineata did not depart significantly from the null model. We speculate that intra-specific aggression in L. bilineata was one possible cause of this result due to dominant individuals limiting access to prime basking sites in smaller or female lizards. Differences in communal basking between the two species supported this notion.


urban lizards; basking; substrate selection

Full Text:



Allan G. M., Prelypchan C. J., and Gregory P. T. (2006), «Population profile of an introduced species, the common wall lizard (Podarcis muralis), on Vancouver Island, Canada», Can. J. Zool., 84, 51 – 57.

Amann T., Rykena S., Joger U., Nettmann H. K., and Veith M. (1997), «Zur artlichen Trennung von Lacerta bilineata Daudin, 1802 und L. viridis (Laurenti, 1768)», Salamandra, 33, 255 – 268.

Angelici F. M., Luiselli L., and Rugiero L. (1997), «Food habits of the green lizard, Lacerta bilineata, in central Italy and a reliability test of faecal pellet analysis», Ital. J. Zool., 64, 267 – 272.

Audsley B. W., Bock C. E., Jones Z. F., Bock J. E., and Smith H. M. (2006), «Lizard abundance in an exurban southwestern savanna, and the possible importance of roadrunner predation», Am. Midlle Nat., 155, 395 – 401.

Avery R. A. (1978), «Activity patterns, thermoregulation and food consumption in two sympatric lizard species (Podarcis muralis and P. sicula) from Central Italy», J. Animal Ecol., 47, 143 – 158.

Avery R. A. (1979), Lizards. A Study in Thermoregulation, The Institute of Biology’s studies in Biology No. 109.

Avery R. A. (1994), «The ‘survey’ posture in wall lizards, Podarcis muralis», Herpetol. J., 4, 132 – 135.

Avery R. A., Basker A., and Corti C. (1993), «’Scan’ behavior in Podarcis muralis: the use of vantage points by an actively-foraging lizard», Amphibia–Reptilia, 14, 247 – 259.

Barbault R. and Mou Y. P. (1986), «Regime alimentaire d’une population de lezard des murailles, Podarcis muralis (Laurent, 1768) dans le Sud-Ouest de la France», Amphibia–Reptilia, 7, 171 – 180.

Basson C. H., Levy O., Angilletta Jr M. J., Clusella T., and Trullas S. (2017), «Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment», Funct. Ecol., 31, 856 – 865.

Bauwens D., Garland J. R., Castilla A. M., and Van Damme R. (1995), «Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation», Evolution, 49, 848 – 863.

Bauwens D., Hertz P. E., and Castilla A. M. (1996), «Thermoregulation in a lacertid lizard: the relative contribution of distinct behavioral mechanisms», Ecology, 77, 1818 – 1830.

Beebee T. J. C. and Griffiths R. A. (2000), Amphibians and Reptiles. A Natural History of the British Herpetofauna, Harper Collins New Naturalist, London.

Böhm M., Collen B., Baillie J. E. M., Bowles P., Chanson J., Cox N., Hammerson G., Hoffmann M., Livingstone S. R., Ram M., Rhodin A. G. J., Stuart S. N., van Dijk P. P., Young B., Afuang L. E., Aghasyan A., Aguayo A. G., Aguilar C., Ajtic R., Akarsu F., Alencar L. R. V., Allison A., Ananjeva N., et al. (2013), «The conservation status of the world’s reptiles», Biol. Conserv., 157, 372 – 385.

Böhme M. U., Kotenko T., Džukić G., Ljubisavljević K., Tzankov N. and Berendonk T. U. (2007), «Phylogeography and cryptic variation within the Lacerta viridis complex (Lacertidae, Reptilia)», Zool. Scripta, 36, 119 – 131.

Capizzi D., Capula M., Rugiero L., and Luiselli L. (2008), «Dietary patterns of two sympatric Mediterranean snakes (Hierophis viridiflavus and Zamenis longissimus) along a gradient of habitat alteration», Herpetol. J., 18, 141 – 146.

Carrascal L. M., López P., Martín J., and Salvador A. (1992), «Basking and antipredator behavior in a high altitude lizard: implications of heat exchange rate», Ethology, 92, 143 – 154.

Castilla A. M., Van Damme R., and Bauwens D. (1999), «Field body temperatures, mechanisms of thermoregulation and evolution of thermal characteristics in lacertid lizards», Nat. Croatia, 8, 253 – 274.

Cerini F., Matte G., Luiselli L., and Vignoli L. (2020), «Do lizards (Podarcis siculus) react to whip snake (Hierophis viridiflavus) scents? A comparative test on odour stimuli recognition», Behaviour, 157, 315 – 331.

Corti C., Capula M., Luiselli L., Razzetti E., and Sindaco R. (2011), «Reptilia», in: Fauna d’Italia, Calderini editore, Bologna.

Doherty T. S., Balouch S., Bell K., Burns T. J., Feldman A., Fist C., Garvey T. F., Jessop T. S., Meiri S., and Driscoll D. A. (2020), «Reptile responses to anthropogenic habitat modification: A global meta-analysis», Global Ecol. Biogeogr., 29, 1265 – 1279.

Dustin J. W., Andrew W., Claridge D. J. P., and Ford F. (2020), «Camera-traps are a cost-effective method for surveying terrestrial squamates: A comparison with artificial refuges and pitfall traps», PLoS ONE, 15(1), e0226913, DOI: 10.1371/journal.pone.0226913.

Germaines S. S. and Wakeling B. F. (2001), «Lizard species distributions and habitat occupation along an urban gradient in Tucson, Arizona, USA», Biol. Conserv., 97, 229 – 237.

Gotelli N. J. and Ellison A. M. (2004), A Primer of Ecological Statistics, Sinauer Associates, Sunderland.

Hailey A. (1982), «Choice of substrate and heating rate in Lacerta vivipara», Br. J. Herpetol., 6, 207 – 213.

Heltai B., Sály P., Kovác D., and Kiss I. (2015), «Niche segregation of sand lizard (Lacerta agilis) and green lizard (Lacerta viridis) in an urban semi-natural habitat», Amphibia– Reptilia, 36, 389 – 399.

Herczeg G., Herrero A., Saarikivi J., Gonda A., Jäntti M., and Merilä J. (2008), «Experimental support for the cost-benefit model of lizard thermoregulation: the effects of predation risk and food supply», Oecologia, 155, 1 – 10.

Heym A., Deichsel G., Hochkirch A., Veith M., and Schulte U. (2013), «Do introduced wall lizards (Podarcis muralis) cause niche shifts in a native sand lizard (Lacerta agilis) population? A case study from south-western Germany», Salamandra, 49, 97 – 104.

Holec P. and Kminiak M. (1970), «Zur Ökologie der Art Lacerta viridis (Laurenti 1768) auf dem Gebiet der Devinska Kobyla (b. Bratislava)», Biologia, 25, 805 – 810.

Horvath G., Meszaros B., Urzan T. J., Bajer K., Molnar O., Garamaszegi L. Z., and Herczeg G. (2017), «Environment-dependence of behavioral consistency in adult male European green lizards (Lacerta viridis)», PLoS ONE, 12, e0187657.

Huey R. B. (1991), «Physiological consequences of habitat selection», Am. Naturalist, 137, 91 – 115.

Huey R. B. and Slatkin M. (1976), «Costs and benefits of lizard thermoregulation», Quart. Rev. Biol., 51, 363 – 384.

Jellinek S., Driscoll D. A., and Kirkpatrick J. B. (2000), «Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland», Austral. Ecol., 29, 294 – 304.

Keinath D. A., Doak D. F., Hodges K. E., Prugh L. R., Fagan W., Sercercioglu C. H., Buchart S., and Kaufman M. (2016), «A global analysis of traits predicting species sensitivity to habitat fragmentation», Global Ecol. Biogeogr., 26, 115 – 127.

Luiselli L. and Capizzi D. (1997), «Influences of area, isolation and habitat features on distribution of snakes in Mediterranean fragmented woodlands», Biodivers. Conserv., 6, 1339 – 1351.

Luiselli L., Filippi E., and Capula M. (2005), «Geographic variation in diet composition of the grass snake (Natrix natrix) along the mainland and an island of Italy: the effects of habitat type and interference with potential competitors», Herpetol. J., 15, 221 – 230.

Luppi M., Gentilli A., and Bogliani G. (2020), «Microhabitat selection of the Western green lizard Lacerta bilineata», Nat. Hist. Sci. Atti Soc. It. Sci. Nat. Museo Civ. Stor. Nat. Milano, 7, 3 – 10.

MacGregor H. E. A., While G. M., and Uller T. (2017), «Comparison of reproductive investment in native and non-native populations of common wall lizards reveals sex differences in adaptive potential», Oikos, 126, 1564 – 1574.

Meek R. (2014a), «Reptile dispersal from a hibernaculum in an agricultural landscape in Western France», Herpetol. Bull., 127, 17 – 21.

Meek R. (2014b), «Temporal distributions, habitat associations and behavior of the green lizard (Lacerta bilineata) and wall lizard (Podarcis muralis) on roads in a fragmented landscape in Western France», Acta Herpetol., 9, 179 – 186.

Meek R. and Luiselli L. (2021), «Decision making under risk of predation in the western whip snake Hierophis viridiflavus», Herpetol. Bull., 157, 32 – 34.

Mole S. R. C. (2010), «Changes in relative abundance of the western green lizard Lacerta bilineata and the common wall lizard Podarcis muralis introduced onto Boscombe Cliffs, Dorset, UK», Herpetol. Bull., 114, 24 – 29.

Rismiller P. D. and Heldmaier G. (1988), «How photoperiod influences body temperature selection in Lacerta viridis», Oecologia, 75, 125 – 131.

Rugiero L. and Luiselli L. (1995), «Food habits of the snake Coluber viridiflavus in relation to prey availability», Amphibia–Reptilia, 16, 407 – 411.

Rugiero L., Vignoli L., Luiselli L., and Meek R. (2018), «Spring basking by Vipera aspis: Observations from Italy and France on the displacement distances of basking vipers from their hibernacula», Herpetol. Bull., 145, 22 – 27.

Rugiero L., Capula M., Di Vittorio M., Dendi D., Meek R., and Luiselli L. (2021), «Ontogenetic Habitat Use and Density of the green lizard (Lacerta bilineata) in contrasted landscapes in France and Italy», Conservation, 1, 1 – 16.

Saint Girons H. (1996), «Structure et evolution d’une petite population de Vipera aspis (L.) dans une region de bocage de l’ouest de la France», Terre La Vie-Rev. D. Ecol. Appl., 51, 223 – 241.

Saint Girons H., Castanet J., Bradshaw S. D., and Baron J. P. (1989), «Demographie comparee de deux populations de Lacerta viridis (Laurenti, 1768)», Terre Vie, 44, 361 – 386.

Sound P. and Veith M. (2000), «Weather effects on intrahabitat movements of the western green lizard, Lacerta bilineata (Daudin, 1802), at its northern distribution range border: a radio-tracking study», Can. J. Zool., 78, 1831 – 1839.

Speybroeck J., Beukema W., Bok B., and Van der Voot J. (2016), Amphibians and Reptiles of Britain and Europe, Bloomsbury Publishing.

Van Damme R. and Quick K. (2001), «Use of predator chemical cues by three species of Lacertid lizards (Lacerta bedriagae, Podarcis tiliquerta and Podarcis sicula)», J. Herpetol., 35, 27 – 36.

Van Hooydonck B, Measey J, Edwards S., Makhubo B, Tolley K. A., and Herrel A. (2015), «The effects of substratum on locomotor performance in lacertid lizards», Biol. J. Linn. Soc., 115, 869 – 881.

Verwaijen D. and Van Damme R. (2008), «Foraging mode and its flexibility in Lacertid lizards from Europe», J. Herpetol., 42, 124 – 133.

Vignoli L., Mocaer I., Luiselli L., and Bologna M. A. (2009), «Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome», Animal Conserv., 12, 456 – 466.

Walker J. M., Cordes J. E., and Taylor H. L. (1996), «Extirpation of the parthenogenetic lizard Cnemidophorus tesselatus from historically signifcant sites in Pueblo County, Colorado», Herpetol. Rev., 27, 16 – 17.

Welbourne D. J., Claridge A. W., Paull D. J., and Forde F. (2020), «Camera-traps are a cost-effective method for surveying terrestrial squamates: A comparison with artificial refuges and pitfall traps», PLoS ONE, 15(1), e0226913.

Yang H., Doherty T. S., and Jessop T. S. (2020), «How influential are squamate reptile traits in explaining population responses to environmental disturbances?» Wildlife Res., 10, 1071/WR19064,47,249.

Žagar A., Carretero M. A. Osojnik N., Sillero N., and Vrezec A. (2015), «A place in the sun: interspecific interference affects thermoregulation in coexisting lizards», Behav. Ecol. Sociobiol., 2015, 1127 – 1137.



  • There are currently no refbacks.

You can subscribe to the print or electronic version of the journal on the site of EastView Company. If you have any questions, please write to the email